Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Global patterns and inferences of tuna movements and trophodynamics
Autores:  Logan, J.m.
Pethybridge, Heidi
Lorrain, Anne
Somes, C.
Allain, Valerie
Bodin, Nathalie
Choy, C.a.
Duffy, L.
Goñi, N.
Graham, B.
Langlais, C.
Ménard, F.
Olson, R.
Young, J.
Data:  2020-05
Ano:  2020
Palavras-chave:  Albacore tuna
Bigeye tuna
Yellowfin tuna
Carbon isotope analysis
Movement indicators
Global ocean
Fisheries management
Resumo:  A global dataset of carbon stable isotope (δ13C) values from yellowfin, bigeye, and albacore tuna muscle tissue (n = 4275) was used to develop a novel tool to infer broad-scale movement and residency patterns of these highly mobile marine predators. This tool was coupled with environmental models and lipid content (C:N ratio) of tuna muscle tissues to examine ocean warming impacts on tuna ecology and bioenergetic condition across Longhurst provinces. Over a 16-year study period (2000–2015), latitudinal gradients in tuna δ13C values were consistent, with values decreasing with increasing latitude. Tuna δ13C values, reflecting modelled global phytoplankton δ13C landscapes (“isoscapes”), were largely related to spatial changes in oxygen concentrations at depth and temporal changes in sea surface temperature. Observed tuna isoscapes (δ13CLScorr), corrected for lipid content and the Suess effect (oceanic changes in CO2 over time), were subtracted from model-predicted baseline isoscapes (Δ13Ctuna-phyto) to infer spatial movement and residency patterns of the different tuna species. Stable isotope niche width was calculated for each Longhurst province using Δ13Ctuna-phyto and baseline-corrected nitrogen isotope (δ15Ntuna-phyto) values to further quantify isotopic variability as evidence of movements across isoscapes. A high degree of movement—defined as the deviation from expected range of Δ13Ctuna-phyto values— was evident in four Longhurst provinces: Guinea current coast, North Atlantic drift, Pacific equatorial divergence, and the North Pacific equatorial counter current. The highest level of population dispersal (variability in Δ13Ctuna-phyto values) was observed in Longhurst provinces within the western and central Pacific Oceans and in the Guinea current coast. While lipid content was low in yellowfin and bigeye, high and variable lipid stores in albacore muscle were consistent with seasonal movements between productive foraging and oligotrophic spawning habitats. Our ability to characterize tuna movement patterns without ambiguity remains challenged by uncertainty in trophic discrimination factors and ecological (e.g. diet variability) processes. However, this study illustrates that model-corrected δ13C values are a valuable, relatively cost-effective tool for identifying potential areas of mixing across management zones, particularly when electronic tagging studies are limited or absent. Stable isotope analyses of tuna tissues can therefore be an additional tool for guiding spatial stock assessments on top predator movement, dispersal patterns, and how they may be altered under a changing climate.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00617/72943/71964.pdf

DOI:10.1016/j.dsr2.2020.104775

https://archimer.ifremer.fr/doc/00617/72943/
Editor:  Elsevier BV
Formato:  application/pdf
Fonte:  Deep-sea Research Part Ii-topical Studies In Oceanography (0967-0645) (Elsevier BV), 2020-05 , Vol. 175 , P. 104775 (19p.)
Direitos:  info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional